7-1

7 Debris Detection Program Details

Introduction

This chapter covers the Debris Detection (DDT) program starting with a broad

overview of the program idea, followed by an in depth discussion.

7.1 Program Initial Ideas

Faced with the data format produced by the Herstmonceux camera system detailed
in chapter 6, recognition of debris by analysis of the debris image in one frame would
be extremely difficult. Stars, noise pixels and any debris that survived the thresholding
process would all look alike - no information about the origin of the centroids is stored
from frame to frame. Effectively the processed data is just a list of positions of
centroids, or “dots”. Many ideas were thought of initially and rejected; e.g. fast fourier
transforms would work well if bright debris were the only target for the algorithm; for
faint debris however, the threshold level of the system would be necessarily set to a
low SNR and in such a case, the faint spike caused by a regularly moving object

would be swamped by the noise.

7.2 Program Final Form

Given a sequence of noisy frames consisting of randomly positioned dots, one
intuitive method for detecting a debris object’s image would be to examine the frame
series for an object moving with uniform speed in a straight line in the image plane
(any slight warping effects caused by the system optics distorting a straight line into a
curve could be modelled mathematically and incorporated into the detection system).
The probability of a straight track of regularly spaced dots being due to random noise
would decrease with the increasing number of dots forming that track, and therefore
increase the probability of the track being due to a real moving object in the FOV. A
probability threshold would eventually be crossed, above which the track could be
reasonably considered as being real.

This technique is similar to the Particle Imaging Velocimetry (PDV) and Particle
Displacement Tracking (PDT) techniques as outlined by Wernet and Edwards (1990),

7-2

Wernet (1991), and Wernet and Pline (1993), but has to operate in a different regime
in terms of the speed and number density of objects within the field of view. In this
case, the debris images always enter the field of view from its edge, cross the field of
view at an arbitrary angle, and exit at a different edge. That is, no debris tracks
originate and/or terminate within the field of view, and because of this, there are
several extra subtleties to be considered when adapting this method to the case of
space debris identification.

The philosophy behind this program was therefore to sort through frames entering
the front end of the system and detect any dots amongst the noise that appeared to be
moving in a regular manner across the FOV.

Debris could enter the FOV at any point in the frame stream coming from the front
end. For this reason the most recent N frames are analysed in a moving bracket fashion
(Figure 7.1). In the forthcoming discussion, frames analysed in order in the moving
bracket will be referred to as “frame 17, “frame 2”, etc. The numbering refers only to
the position within the moving bracket, which will be different from its position in the

entire night’s stream of data.

]

/ L] 4-8

Analysis Bracket
nalysis Brackets : | 5-9

Figure 7.1: Diagram illustrating the moving bracket principle of frame analysis for a 5-frame bracket.

Debris would obviously enter the FOV from its edge, moving further from the edge
with time. For this reason there is no point searching the middle of frame 1 for the

beginning of a possible debris stream. Rather, only an “active border” sensitive to new

7-3

debris entering the FOV around the edge of the frame need be examined (see Figure
7.2 and Figure 7.3). The width of this border corresponds to twice the maximum
apparent angular velocity of debris expected, being the diameter of a circular “search
area” employed in frame 2 to try and associate dots within it there to dots in frame 1
within the active border.

A candidate debris stream starts with a dot selected in this active border region
(Figure 7.2). A circular search area centred on the same X,y position of the first dot is
then scanned in frame 2 to produce pairs of dots that may or may not be the first two
dots of a debris track across the FOV. The search area is initially circular
(modifications to the initial shape are outlined later on), its radius being the maximum
apparent angular velocity of space debris the search program will be sensitive to.

A frame 2 dot within this radius (i.e. “near” to the frame 1 dot) could be the next in
a possible debris track. Its focal plane displacement relative to the first dot is noted and
used to extrapolate forwards into frame 3 to create a “predicted position” (PP), another
small search area with a radius defined to account for any offsets in the centroiding
algorithm.

This PP is then scanned to determine if the third in this possible debris stream is
present. If not, the scan returns to the next dot in the search area in frame 2 and
another stream interrogated. If a third dot is present, the chances of it being a real
debris track are more likely, another PP produced and a fourth frame examined, and so
on recursively until the desired accuracy is reached.

Time

Frame 1 Frame 2 Frame 3 Frame 4

Figure 7.2: Illustration of the basis behind the search algorithm. A pair of dots are extrapolated into two
or more frames by creating predicted positions in those frames. Those small areas are then scanned to
see if any further dots exist. If so, the probability of those dots being the track of a real object passing

through the FOV is high.

No

>< confirmation

Frame 1 dot

T~

Initial circular /
search area
surrounding frame
1 dot

Active Border
m A

No
confirmation

_» X

Track
Confirmed

No
>< confirmation

7-4

Key to Frame
Numbering

® Frame 1

m Frame 2
A Frame 3

¥ Frame 4

Figure 7.3: View looking down the axis of the space-time “corridor” of Figure 7.2, to illustrate the
time independent methodology of the search algorithm, that of sorting through a field of coded dots to

7.3 Search Area & Predicted Position Theory

7.3.1 Reason for Search Area

confirm or refute the presence of a particle’s track.

It is not necessary to pair every frame 2 object with every frame 1 object. Owing to

the deliberately short frame interval, a debris object will only have had time to move

partway across the FOV between frames. For a given frame interval tf and maximum

expected topocentric angular velocity mmax, the maximum distance R moved across

the FOV between frames therefore defines a “search radius”, Rg, beyond which it is

pointless to make pairs. For this general case, there is therefore a circular “search

area”, Ag, for every frame 1 object around its corresponding point in frame 2 (Figure

7.4) The picture is not as simple as this in practice however, for reasons given in

section 7.3.3.

7-5

)4 ® frame 1 dot
potential debris frame 2 dot

tracks search area

Figure 7.4: Introducing the concept of the search area placed around each frame 1 dot analysed. Only
those frame 2 dots within the search area are considered for pairing.

As the search area radii are defined by the maximum angular displacement of the
debris between frames, then if N dots per line are required to minimise ambiguity, the
search area radius is therefore given by:

L

Re=—~— 7.1
S (N _ 1) (7.1)

where L = length of side of CCD frame (a square CCD will be assumed throughout).

7.3.2 Search Philosophy & Creation Of Active Border

As introduced in section 7.2, once the observing run is under way, any new debris
object entering the FOV will enter at the frame edge and move away from that edge
into the frame. This highlights the region around the edge of the frame as sensitive to
the formation of new debris tracks. The shape and maximum extent of this sensitive
region into the frame can be obtained by considering the path of a debris particle
moving at maximum considered angular velocity, in a direction perpendicular to the
frame edge. If in frame 0 its image was an infinitesimal distance outside the frame,
then in frame 1 it would be at a distance Rg into the frame and by frame 2, at 2Rg
(Figure 7.5). The maximum width of the Active Border then is Rg, extending into the
frame as a rectangular border around the frame edge. This defines the maximum
intrusion region a new debris particle can make into the frame, and the search for all
possible new debris tracks must be concentrated within the active border. This has the
beneficial effect of reducing the number of image objects to make pairs with since the

central remainder of the frame is not used for pair production.

7-6

active border :
width :
|
|
|
outside of | frame :
frame area :
|
|
search :
area | debri
p ebris
/] track >
frame 0 dot
[}
=)
©
[]
o
e
&= frame 2 dot
frame 1 dot

Figure 7.5: Positioning of frame 2 search area around the frame 1 dot and its relation to the active
border.

7.3.3 Search Area Geometry
In the case of the perpendicular travelling debris in Figure 7.5, the only place

necessary to look for candidate frame 2 objects to pair with the frame 1 object would

be at the exact point a distance 2Rg into the frame, in line with the frame 1 object. In

this case the search area is not a circle but a point at a specific spot in relation to the
frame 1 object. The number of frame 2 objects lying within this search area would be
small, and the number of pairs produced small in consequence.

The search area for debris moving slower than the maximum angular velocity is
more complex in nature. Consider a debris object in the image frame moving at an
angular velocity such that it moves a distance r < Rg in tf, and in frame 1 its image is a
distance d <r from the frame edge. Initially one wouldn’t know its angular velocity, so
a circular search area of radius Rs is tentatively put around its corresponding position

in frame 2 at first (dashed circle around red frame 1 dot in Figure 7.6).

. ' ///
.
pe Y
%/// s
-

Figure 7.6: Geometry of search area once geometric factors take effect.

All frame 2 objects lying within Ry, but to the left of a line parallel to the edge
running through the frame 1 position can’t be candidates for pairing, because their
consideration would imply that the object was moving out of the frame. This in turn
implies that the object has spent some time previous to the current frame traversing the
field of view, and so should have been detected earlier on. Therefore it cannot be part
of a new debris track and that zone can therefore be ignored (dotted zone in Figure
7.6).

All frame 2 objects lying within the area delineated by the first parallel, the search
area boundary, and a second line parallel to the first and the same distance in from the
edge (striped zone in Figure 7.6) cannot be considered for pairing either. This is
because their inclusion would imply that they would move a distance less than d in the

interval tf and would therefore be possible first, not second, dots in new debris tracks,

if debris objects they are. These objects in effect are moving “too slow” to be
considered. The only frame 2 objects worthy of consideration then lie in the remaining
segment of the circular search area (yellow segment in Figure 7.6), it being the real
search area for this case.

Another way of determining the real search area is to think that by definition the

7-8

frame 0 object accompanying the frame 1 object (for which the search area has been
constructed) must have been outside the frame during integration of frame 0. Within
the bounds of Rs, the segment of the circular search area outside the frame must
therefore contain all possible positions of the object in frame 0. The area denoting the
only places the object can be in frame 2 therefore is that obtained by mapping the
frame 0 area through the frame 1 position, giving the same area described in Figure 7.6

(Figure 7.7).

N

frame 0 area frame 2 area

frame 1 dot

Figure 7.7: Mapping geometry of range of possible positions of previous frame’s dot position, through
frame 1 dot, into frame 2.

A further geometric effect to be taken into account however is to consider a debris
track that would leave the FOV before the requisite number of dots in the track have
been confirmed, determined by position of the frame 1 dot. For tracks that would
overshoot the FOV, there is no point creating line pairs in the search area. Thus the

search area may be truncated to imitate the edge of the frame (Figure 7.8).

(2) (b)

Figure 7.8: (a) Edge truncation effect on frame 2 search area. The initial segment of the search area
shown in Figure 7.7 is truncated in a pattern (pale yellow) matching the overlap of the frame and the
“end zone”, the region where all possible debris tracks would finish (striped). Grey lines show the
match from the search area to the end zone. (b) Corner geometry effect on the search area. The initial
search area, neglecting truncation, is shown uncoloured with a solid border. Superimposed on top of this
is the truncated search area (pale yellow), which matches the end zone (striped).

It can be seen that no matter the configuration (sides or corners), the search area
decreases the further the frame 1 object is from the frame edge, until at a distance
d = Rg the search area is vanishingly small and for d > Rs, is zero. Thus only a region,
or “active border” around the edge of the frame need be analysed. The effective search
area of the Active Border therefore is not simply the area of the whole frame minus the
area of the central unused part, but some more complex function that decreases with

increased “depth” into the frame, thus being less than a simple subtraction of areas.

7.3.4 Predicted Positions

The predicted positions that are projected forwards in the time stream from any
paired frame 1 and 2 dots are extrapolated from the relative vector between them, and
have a finite size to allow for uncertainties during centroiding caused by atmospheric
blurring. The predicted position generating and scanning subroutine in the program is
accessed again recursively each time a successful “hit” is detected until the desired
probability threshold mentioned earlier is surpassed. At this point a real debris track is

deemed to have been detected and its track attributes noted. The search algorithm then

7-10

retraces its steps to the last branch point and continues the search. Thus the algorithm
searches all possible debris tracks sequentially, but not all the dots in the bracket are

examined.

7.4 Extra considerations

7.4.1 Star Background

If the telescope is fixed with respect to the horizon, stars will drift across the FOV.
Given the location of the observing site and the pointing direction of the camera, the

magnitude o, and direction 0, of sidereal motion with respect to an altazimuth grid

(see Figure 7.9) can be calculated as:

1

Oy = i—n [1 —(sina sin ¢ + cos a cos ¢ cos A)z]E rad s™ (7.2)
SD
1
& sin Ogp =cos ¢sin A [1 —(sina sin ¢+ cosa cos ¢ cos A)2 T ? rad, (7.3)

where a = Altitude (radians above horizon), A = Azimuth (radians), ¢ = topocentric
latitude (radians), Tgy = length of one sidereal day (86164.091 s).

From equations (7.2) and (7.3) the expected motion of stars through the FOV can
be calculated. Given the small size of the FOV, fluctuation of the sidereal vector
through the FOV is minimal. Hence if a pair of dots from frames 1 and 2 yield a
displacement vector matching the sidereal vector, they could be flagged to be the first
two probable dots of a star track. Further frames would be used to confirm this, then
all further points across the FOV would be calculated to the point where the star leaves
the FOV, in order that they are not included in the search for debris.

An alternative method of locating stars in the FOV could be to use a lookup table of
star positions to determine where and at what time stars would enter and leave the
FOV. If however the telescope was siderostatic (tracking star motion), stars would not
drift through the FOV at all, and the same lookup table could be used to mask out the

stationary stars from the image (i.e. direct the computer to ignore those centroids).

7-11

1079S—1
Altitude °
Horlzon _
BXE M BT S SR e
: ::l {i?#&héﬁ AZ;I(I)l:lth;‘-{ﬁ!. S h*;‘.-"’“;"h
"'*'= b ity S 0 AN v) 2R

Figure 7.9: Example of variance of sidereal motion vector with altitude. The observer is located at
50° North latitude, looking at azimuth 30°. The vector arrows are drawn to scale.

7.4.2 Noise (camera/sky - twilight)

The point of the investigation is to detect small and therefore faint debris, which
necessitates thresholding close to the noise levels. It helps therefore to keep noise
levels to a minimum. This problem can be addressed by cooling the detector to liquid
nitrogen temperatures to reduce electron shot noise, and ensuring good manufacture of

the CCD to minimise 1/f noise (Mclean, 1989).

7.5 Implications on minimum height detectable

Given that the minimum number of dots to make an unambiguous straight line is
three, this puts constraints on the maximum topocentric angular speed y, a piece of
debris can have when passing through the FOV. Too fast, and the debris will be out of
the FOV again before the system can take three images. The parameters controlling
this are therefore the platescale and the size of the CCD (which give the FOV), the
duty cycle time T,y which determines how many exposures can be taken in a given

time, and the angular speed of the debris, ®iep.

7-12

It can be seen therefore that the maximum value of oy, to ensure N dots in a line is

given by:
-
which for N=3, _FoVv (7.5)
2T,

Equation (7.5) therefore dictates the maximum ., detectable for the system given. In
chapter 6 the relation between y,, and height for tracking and non-tracking systems
was reproduced; equation (7.5) can therefore be related to a minimum (circular orbit)
height using the information in chapter 6. For example, consider a telescope system
with a FOV of 0.5° and a cycle time Tcy. of Is. The maximum possible i is
therefore:

~1800"
(Dtopmax - 2%0.5

=1800"s !, (7.6)

which by Figure 6.2 implies a height of ~ 800km for both tracking and non-tracking

systems.

7.6 Implementation

7.6.1 Choice of C over Fortran

C was chosen as the programming language for the DDT algorithm for two reasons:

1. The software for the camera “front end” system at Herstmonceux was written in C,
so it was deemed wise to maintain compatibility.

2. The algorithm lends itself readily to a recursive approach when progressing down
the lines of inquiry of a debris stream, as after the initial pair production using the
dots of frames 1 & 2, the calculation and production of predicted positions is
repeated for however many times are necessary. Recursion is a feature supported

by C, but not by Fortran 77.

7.6.2 Picture data 1I/0

A cyclic frame counter is adopted to control the order in which frames are analysed

within the analysis bracket. It would be time-consuming to completely reload all

7-13

pertinent frames into the bracket in a different order, so instead the newest picture
overwrites only one bracket frame at a time, and analysis simply follows a different

order each time (Figure 7.10).

Real Frame Progression

—> | 41]42] 43|44 45 |46]47[48] 40|50 51]52] 53] 54 55] 56] 57 [58] 50 | =—>

[aety

2(3(4|5|6|7|81 @
2

%
1%
%%

3\ 4|5/6{78|1|2 %,
3
%

Figure 7.10: Illustration of how the moving bracket corresponds to the absolute picture progression.

7.6.3 Search Area Scanning

Each picture’s data is read into the corresponding frame in the moving bracket as
per the cyclic counter. The moving bracket consists of a block of memory the same
size as the total number of pixels for the number of frames in the bracket (Figure
7.11), e.g. 10 frames corresponding to images from a 1024x1024 pixel CCD is approx.
10.5x10° memory locations. The memory is allocated as RAM at the beginning of the
observing run once only, and filled with zeros automatically (using the C “calloc”
function).

Rather than use arrays for this purpose, the memory is created as a block which is
accessed using pointers. This has the advantage that access of the memory is faster; the
alternative, of using index numbers to refer to elements of an array, is a relatively high

level feature of C and therefore requires more time (Seigel, 1989).

7-14

Figure 7.11: Schematic showing how the memory allocated (grey) relates to the “virtual frames” of the
moving bracket. First cells in each of four simplified frames are shown with their corresponding
positions in the allocated memory.

The frames are filled by reading in the x,y values from each picture, calculating the
memory location of each dot and writing a “1” in that memory cell. When that frame
needs to be filled with a later picture, it must first be “flushed”, i.e. the old data must
be erased or it would be confused with the new data. This is accomplished by reading
in the x,y values again from the picture file, and using that data to write “0” to the
required memory cell.

A further enhancement of the program would be to write different numbers to each
memory cell corresponding to the picture number from which the data is extracted,
thus removing any confusion about which dots were from which picture data, and
obviating the necessity of flushing the frame.

The version of the DDT coded for this thesis uses rectangular search areas (SAs)
and predicted positions (PPs) rather than the more exact shapes described in section
7.3.3. It was thought that such areas, while not as true to the nature of the problem as
the more exact ones, would require much less CPU time to calculate their shape, and
to scan. Plus, coding of the software to calculate and scan the exact areas was difficult
due to time constraints.

The SAs and PPs are scanned in a raster-scan fashion; pixels with no dot have a

value of 0 while those that do have a value of 1.

7-15

Square Search
Area

Square Predicted Positions
||
//./
“Corner” Effect on Square
. Search Area

Figure 7.12: Tllustration of the rectangular search areas used for the tests of the debris searching program. Yellow
areas show the parts of the initial search areas that are actually searched. The small yellow squares represent the

smaller predicted positions set up to confirm or refute the presence of a possible debris track (arrow).

7.7 Algorithm code
The full code listing may be found in Appendix 4.

7.8 Summary

The structure and form of the DDT program was presented as a response to the
nature of the data to be analysed.

The program uses a moving bracket technique to analyse the most recent few
frames.

Full working of the program was presented in detail - geometric effects on the
search method were described.

Implementation of the algorithm into code was described.

	7 Debris Detection Program Details
	7.1 Program Initial Ideas
	7.2 Program Final Form
	7.3 Search Area & Predicted Position Theory
	7.3.1 Reason for Search Area
	7.3.2 Search Philosophy & Creation Of Active Border
	7.3.3 Search Area Geometry
	7.3.4 Predicted Positions

	7.4 Extra considerations
	7.4.1 Star Background
	7.4.2 Noise (camera/sky - twilight)

	7.5 Implications on minimum height detectable
	7.6 Implementation
	7.6.1 Choice of C over Fortran
	7.6.2 Picture data I/O
	7.6.3 Search Area Scanning

	7.7 Algorithm code
	7.8 Summary

